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ABSTRACT

BACKGROUND QT interval-prolonging drug-drug interactions (QT-DDIs) may increase the risk of life-threatening
arrhythmia. Despite guidelines for testing from regulatory agencies, these interactions are usually discovered after drugs
are marketed and may go undiscovered for years.

OBJECTIVES Using a combination of adverse event reports, electronic health records (EHR), and laboratory experi-
ments, the goal of this study was to develop a data-driven pipeline for discovering QT-DDIs.

METHODS 1.8 million adverse event reports were mined for signals indicating a QT-DDI. Using 1.6 million electro-
cardiogram results from 380,000 patients in our institutional EHR, these putative interactions were either refuted or
corroborated. In the laboratory, we used patch-clamp electrophysiology to measure the human ether-a-go-go-related
gene (hERG) channel block (the primary mechanism by which drugs prolong the QT interval) to evaluate our top
candidate.

RESULTS Both direct and indirect signals in the adverse event reports provided evidence that the combination of ceftri-
axone (a cephalosporin antibiotic) and lansoprazole (a proton-pump inhibitor) will prolong the QT interval. In the EHR, we
found that patients taking both ceftriaxone and lansoprazole had significantly longer QTcintervals (up to 12 msin white men)
and were 1.4 times more likely to have a QTc interval above 500 ms. In the laboratory, we found that, in combination and at
clinically relevant concentrations, these drugs blocked the hERG channel. As a negative control, we evaluated the combi-
nation of lansoprazole and cefuroxime (another cephalosporin), which lacked evidence of an interaction in the adverse event
reports. We found no significant effect of this pair in either the EHR or in the electrophysiology experiments. Class effect
analyses suggested this interaction was specific to lansoprazole combined with ceftriaxone but not with other cephalosporins.

CONCLUSIONS Coupling data mining and laboratory experiments is an efficient method for identifying QT-DDIs.
Combination therapy of ceftriaxone and lansoprazole is associated with increased risk of acquired long QT syndrome.
(J Am Coll Cardiol 2016;68:1756-64) © 2016 by the American College of Cardiology Foundation.

orsades de pointes is a ventricular tachy- referred to as acquired long QT syndrome (LQTS)
cardia that can result in sudden death (1) (2). The U.S. Food and Drug Administration (FDA)
and occurs as an adverse effect of more has established strict guidelines for evaluating the
than 40 medications that prolong the QT interval, risk of acquired LQTS for new compounds when
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administered individually. Nonantiarrhythmic com-
pounds that increase the QT/QTc interval by 20 ms
or more are unlikely to be approved, and a compound
associated with an increase of 10 ms or more would
face many challenges (3). Even a 5 ms increase would
prompt an evaluation of the risks and benefits of the
new compound (3). Studies of both cardiac and
noncardiac compounds found that a QTc interval
above 500 ms is associated with significant risk of
Torsades de pointes (4,5).

Acquired LQTS is of particular concern when it is
not anticipated and occurs as the result of a QT
interval-prolonging drug-drug interaction (QT-DDI)
(2,6). QT-DDIs are not routinely evaluated pre-
clinically and can go undiscovered for years. For
example, quetiapine (an antipsychotic agent) was
on the market for nearly 10 years before reports
of a QT-DDI with methadone (an analgesic agent)
prompted investigation into a possible mechanism
(7). It took 3 more years before a label change was
made to caution against the use of quetiapine in
combination with other drugs known to prolong the
QT interval.

SEE PAGE 1765

Large clinical databases, such as electronic health
records (EHR), represent an opportunity to rapidly
detect QT-DDIs and save lives (8,9). Drug safety al-
gorithms could be applied to health record data in
near real time, flagging potentially dangerous drug
interactions before they become widespread. Fur-
thermore, these analyses are in situ and therefore
focus on the most important drug combinations:
those that are actually used in clinical practice. Un-
fortunately, analysis of medical records is complex,
due to issues of missing data, noise, and bias (10). This
leads to high false positive rates and algorithms that
often will mislead health care providers. Laboratory
experiments, especially if they are high-throughput,
can be used to screen data-mined hypotheses for
plausibility. Following observational analysis with
confirmatory prospective experiments can remove
the spurious signals, enabling clinically useful dis-
coveries (11).

We developed a data science pipeline to mine
potential QT-DDIs from clinical databases. In this
pipeline, we combine evidence of QT-DDIs from the
FDA Adverse Event Reporting System (FAERS) and
the EHR at New York-Presbyterian/Columbia Uni-
versity Medical Center (CUMC-EHR). We identified a
putative interaction between lansoprazole (a
proton-pump inhibitor [PPI]) and ceftriaxone (a
cephalosporin antibiotic). Importantly, this is an
interaction that would not have been suspected
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using current surveillance methods. We
used patch-clamp electrophysiology of cells
stably expressing human ether-a-go-go-
related gene (hERG) channels to establish a
physiological mechanism. We further con-
firmed the specificity of our pipeline by also
investigating the combination of cefurox-
ime (another cephalosporin) and lansopra-
zole, a drug pair that did not have evidence
of an interaction in FAERS. In the clinic,
patients on the combination of ceftriaxone
and lansoprazole had 12 ms (95% confi-
dence interval [CI]: 7 to 15 ms) longer QTc
intervals than patients exposed to either
drug alone and were 1.4 times as likely to
have a QTc interval above 500 ms. The
negative control showed no significant ef-
fect. A QT-DDI between ceftriaxone and
lansoprazole has the potential for significant
morbidity and mortality.

METHODS

DATA SOURCES. We used 2 independent databases
to investigate possible QT-DDIs. The first database
(Twosmes) was a derivative of 1.8 million adverse
event reports from FAERS mined for evidence of
adverse drug-drug interactions that could not be
explained by the individual effects of the drugs (12).
The second database consisted of 1.6 million elec-
trocardiograms (ECGs) from 382,221 patients treated
at New York-Presbyterian/CUMC between 1996 and
2014. To obtain the heart rate-corrected QT (QTc) in-
tervals, we wrote a parser to automatically extract
the patient identifier, laboratory date, and QTc value
from the ECG reports. QTc values were calculated
using Bazett’s formula. We manually checked 50
abnormal ECGs (defined as QTc >500 ms) to confirm
we were extracting the correct values and found that
the parser obtained 100% precision and recall. We
implemented the pipeline using Python 2.7.9 (Python
Foundation, Wilmington, Delaware) and R version
3.2.2. (R Foundation for Statistical Computing,
Vienna, Austria).

IDENTIFICATION OF CANDIDATE QT-DDIs. We used
the side effect reporting frequencies in Twosipes to
find drug pairs significantly over-reported with the 6
adverse events in the standardized MedDRA (Medical
Dictionary for Regulatory Activities) query for
“Torsade de Pointes/QT prolongation”; we call this
the direct evidence model (12). However, most drug
pairs are not directly reported with QT prolongation.
In addition, we performed latent signal detection, a
method we have previously validated (13,14), to

ABBREVIATIONS
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identify candidate QT-DDIs that lacked prior direct
evidence. To perform latent signal detection, we
used machine learning to define and validate a side
effect profile of 13 side effects associated with
known QT-prolonging compounds. Some of these
latently identified side effects (such as arrhythmia
and rhabdomyolysis) are positively correlated with
QT interval prolongation, whereas others (such as
hemorrhage and myocardial infarction) are nega-
tively correlated (Figure 1B), We previously validated
the method using drug pairs containing a known
QT-prolonging drug (2) and demonstrated high
specificity and sensitivity (Online Figure 1). We then
scanned for novel drug interactions in the TwosipEs
database that matched the side effect profile; we
refer to this as indirect evidence. We scored each
drug pair for the amount of both direct and indirect
evidence.

EVALUATION OF CANDIDATE QT-DDIs USING THE EHR.
We attempted to corroborate (or refute) each of the
candidate QT-DDI hypotheses using the heart rate-
corrected QTc values from ECGs stored in the
CUMC-EHR. For each candidate drug-drug interac-
tion, we defined an exposed cohort and 2 control
cohorts. Those patients included in the exposed
cohort were administered both of the drugs within a
7-day window. Those in the control cohorts had evi-
dence of exposure to only 1 of the 2 drugs ever in their
records. Only patients who had at least 1 ECG in the
following 36 days after drug exposure (either combi-
nation or single) were included. Corroboration
required that we found significantly longer heart rate-
corrected QTc intervals in patients on combination
treatment compared with patients on either drug
alone. The CUMC-EHR uses Bazett’s formula by
default; we also evaluated the change in QT interval
using the Fridericia, Framingham, and Hodges
correction formulae (15), Because the distributions of
QTc intervals were non-normal, we assessed signifi-
cance using a Mann-Whitney U test with a Bonferroni
correction for multiple hypothesis testing. We further
verified that this effect could not be explained by
concomitant medications (analysis of covariance with
concomitant medications modeled as categorical
variables) (14). This analysis was stratified by sex
because QT interval durations are known to differ
between men and women (16). We evaluated the ef-
fects of each drug pair both on individual races and
on all races combined (Mann-Whitney U test). We also
performed a post hoc power analysis to estimate our
ability to detect a change in QTc interval for the
sample and effect sizes present in our EHR (17).
Only those QT-DDIs corroborated by the EHR data

JACC VOL. 68, NO. 16, 2016
OCTOBER 18, 2016:1756-64

(in either men, women, or both) were considered for
laboratory analysis.

PATCH-CLAMP ELECTROPHYSIOLOGY. QT-prolong-
ing drugs have in common the ability to block the
hERG channel (which conducts Ig,) in the heart. We
evaluated the combination of ceftriaxone and lanso-
prazole by performing patch-clamp electrophysiology
of cells stably expressing Ix,. Using an automated
patch-clamp system (PatchLiner, Nanion, Germany)
in voltage clamp mode, we examined the
concentration-dependent block of the Ik, current
by each drug individually, as well as in combina-
tion, using dimethyl sulfoxide as vehicle control
(Figure 1D). We applied a voltage protocol with a step
to +40 mV, followed by a return to —40 mV, to elicit
the inward-rectifying tail current. This protocol was
repeated every 20 s for the length of the experiment,
and after 10 consecutive sweeps in each concentra-
tion, the concentration was increased. We then
averaged the current at the end of each drug appli-
cation and normalized it to the control to measure the
block by each compound. We assessed significance by
using a test of repeated measures on the log-
normalized block percentages.

We performed patch-clamp electrophysiology ex-
periments as described for ceftriaxone alone, lanso-
prazole alone, and ceftriaxone and lansoprazole
combined, and similarly for the negative controls of
cefuroxime alone and cefuroxime and lansoprazole
combined. We evaluated the ability of ceftriaxone or
cefuroxime to block the hERG channel at concen-
trations of 0.1, 1, 10, 50, and 100 pM. For lans-
oprazole, we evaluated at 0.1, 1, and 10 pM. We
performed 3 combination experiments. For the
combination of ceftriaxone and lansoprazole, we
held lansoprazole constant at either 1 yM or 10 pM
and increased the dose of ceftriaxone stepwise from
0.1 to 100 pM. To evaluate our negative control of
cefuroxime and lansoprazole, we held lansoprazole
constant at 1 uM and increased the dose of cefurox-
ime stepwise from 0.1 to 100 pM. The concentrations
tested were chosen to include the range of plasma
concentrations usually reached during routine clin-
ical use of the drugs (1.9 to 3.9 M for lansoprazole,
24 to 228 pM for ceftriaxone, and 35 to 428 pM for
cefuroxime) (18-21).

COMPUTATIONAL MECHANISTIC MODEL. We used a
computational model of the human ventricular myo-
cyte (22) to simulate the action potential for the hERG
block we observed for ceftriaxone, lansoprazole, and
the combination from our laboratory experiments.
We ran the model for a ventricular action potential
paced at 1 Hz with baseline conditions and 10% or 55%
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FIGURE 1 Data Science and Experimental Pipeline for Identifying and Valldating QT-DDIs
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(A) Chemical structures for ceftriaxone (cephalosporin) and lansoprazole (proton pump inhibitor), which we predicted would have a QT-DDI. We predicted cefuroxime
{cephalosporin) and lansoprazole not to interact. (B) QT-DDI discovery in FAERS: data-driven side effect profile containing latent evidence of a QT-DDI (solid boxes =
positive correlation with QT prolongation; open boxes = negative correlation). Each bar represents the reporting frequency of a given side effect in FAERS for ceftriaxone
(green), lansoprazole (blue), cefuroxime (orange), ceftriaxone + lansoprazole (red), and cefuroxime + lansoprazole (purple). (C) Retrospective corroboration in
electronic health records. (Left) Differences in QTc interval (mean + 95% Cl) between cases (patients prescribed the drug pair) and controls (patients on only 1 drug).
We stratified the analysis by sex (men = gray; women = teal) and evaluated all races combined, as well as whites, blacks, and “other, including Hispanic" separately.
The asterisk indicates the change in QTc intervals Is statistically significant (Mann-Whitney U test with Bonferroni correction). We obtained 95% Cis by bootstrapping
case and control QTc distributions and calculating the change in median QTc for each iteration. (Right) Percentage of patients with a QTc interval =500 ms (mean & 95%
Cl), stratified by sex and race. The asterisk indicates the combination had a significantly greater proportion of patients with a QTc Interval =500 ms than either
drug alone (independent samples Student t-test with Bonferroni correction, comparing means of single drug and combination therapy percentage.sqo distributions
generated using bootstrapping). (D) Experimental validation using patch-clamp electrophysiology. (Left) Change in hERG current from control (mean = SD) for
increasing concentrations of cephalosporin alone (dashed line), and increasing concentrations of cephalosporin in the presence of a single concentration of lansoprazole
(solid lines). (Right) Representative traces from each patch-clamp electrophysiology experiment. (Top to bottom) hERG channel current in the presence of vehicle
only (control), and then cephalosporin at 3 concentrations (0.1, 10, and 100 pM); hERG channel current in the presence of lansoprazole alone and then in combination
with progressively increasing concentrations of cephalosporin. CI = confidence interval; other abbreviations as in Central Illustration.
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TABLE 1 Demographic and Clinical Characteristics of Cohort
Men Women
Combination of ceftriaxone + lansoprazole
n 934 1414
Demographic
Age, yrs 613 £16.9 66.5 + 18.5
% Race distribution
White 57.3 52.9
African American 18.9 20.2
Other/unknown 23.8 26.9
QTc, ms 458 (398-588) 457 (401-571.7)
% Patients with QTc =500 ms 19.27 16.34
Combination of cefuroxime + lansoprazole
n 107 228
Demographic
Age, yrs 66.1 £15.7 67.6 +17.9
% Race
White 56.1 60.1
African American 131 14.9
Other/unknown 30.8 25.0
QTc, ms 450 (393.6-579.4) 443.5 (398.7-579.2)
% Patients with QTc =500 ms 14.95 11.40
Ceftriaxone only
n 5,734 6,850
Demographic
Age, yrs 59.5 +17.9 63.7 £19.8
% Race
White 46.6 45,1
African American 19.0 18.4
Other/unknown 34.4 36.5
QTc, ms 446 (394-566) 448 (398-560)
% Patients with QTc =500 ms 14.21 1.43
Cefuroxime only
n 636 957
Demographic
Age, yrs 61.5+17.6 66.0 +19.3
% Race
White 54.1 50.3
African American 20.6 19.3
Other/unknown 25.3 30.4
QTc, ms 435 (391.9-552.1) 439 (397-551.1)
% Patients with QTc =500 ms 116 9.09
Lansoprazale only
n 122N 13,074
Demographic
Age, yrs 60.0 + 15.8 63.1+£172.7
% Race
White 60.8 54.6
African American 13.9 16.7
Other/unknown 253 287
QTc, ms 443 (395-572) 445 (399-569)
% Patients with QTc =500 ms 12.84 12,07
Values are n, mean =+ SD, or median (95% confidence Interval).

block of hERG current (chosen using the current block
observed in the electrophysiology experiments). We
evaluated the action potential duration at 70% of
repolarization (APD70).
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RESULTS

CANDIDATE QT-DDI DISCOVERY VIA DATA SCIENCE. We
detected 889 putative signals in FAERS, of which 34
(1.42x more than expected by chance, p = 0.003)
were corroborated by the CUMC-EHR, after multi-
plicity correction. Twenty-six signals were eliminated
by confounder analysis for concomitant medications.
The remaining 8 combinations could not be explained
by concomitant medications and were not previously
associated with acquired LQTS (14). We prioritized
the combination of ceftriaxone and lansoprazole for
experimental validation, as lansoprazole is available
over the counter and is one of the top 200 most-
prescribed drugs (totaling over 2.6 million pre-
scriptions in 2010) (23). An interaction with a PPI
could therefore have a profound impact on patient
safety. As a negative control, we chose to evaluate the
combination of cefuroxime and lansoprazole as,
according to our algorithm, it did not match the side-
effect profile for QT prolongation in FAERS (Figures 1A
and 1B).

CO-MEDICATION OF CEFTRIAXONE AND LANSOPRAZOLE
IS ASSOCIATED WITH PROLONGED QT IN THE EHR. Over-
all, the QTc intervals (Bazett’s correction) for male
patients taking this combination were 12 ms (95% CI:
7 to 15 ms; n = 934) longer than those of patients
taking either drug alone (p < 0.001); for female pa-
tients, QTc intervals for patients taking the combi-
nation were 9 ms (95% CI: 5.2 to 11.3 ms; n = 1,414)
longer than those of patients taking either drug alone
(p < 0.001) (Figure 1C). We evaluated QT interval
prolongation post hoc using the Fridericia, Fra-
mingham, and Hodges correction formulae. In men,
all 3 formulae were significant, with p < 0.01 (Online
Table 1), and in women, Fridericia and Hodges
formulae were significant, with p < 0.01. When
stratifying by race in addition to sex, we observed
the largest effects were in white men (12 ms increase;
95% CI: 6.5 to 17 ms; p < 0.001) and in black women
(12 ms increase; 95% CI: 3.7 to 18.5 ms; p < 0.001).
We performed a regression analysis which confirmed
the increased sensitivity to the drug pair in white
patients (p = 0.049) (Online Table 2). In 19% of men
taking the combination, the QTc was =500 ms, an
accepted threshold for clinical concern (3), compared
with 14% (p < 0.001) of patients taking only 1 drug
(Table 1).

Applying the same case-control analysis to cefur-
oxime and lansoprazole showed no significant dif-
ferences in QTc intervals for either men (7 ms
increase; 95% CI: —4.5 to 17 ms, n = 107; p = 0.167) or
women (1.5 ms decrease; 95% CI: —9.3 to 4.3 ms;
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n = 228; p = 0.155). We observed no significant
changes in QTc interval when further stratifying by
race. See Figure 1C for complete results.

We performed sample-size and effect-size ana-
lyses, which demonstrated that, with 100 patients
prescribed either combination, we would be able to
detect a 10 ms QT interval prolongation with 80%
power; with 1,000 patients, the same effect size could
be detected with 100% power (Online Figure 2).

A total of 603 patients taking ceftriaxone and
lansoprazole had ECGs both before and after they
started combination treatment. To control for base-
line confounders, we performed a paired analysis
comparing each of these patient’s highest QTc in-
terval from ECGs performed up to 36 days before and
after exposure to ceftriaxone and lansoprazole. We
stratified the analysis by both sex and race. We
observed a statistically significant increase in QTc
interval for both white men (14.0 £ 4.0 ms increase;
p = 6.56 x 1074) and white women (12.9 + 3.3 ms
increase; p =1.03 x 10~#). We observed no significant
change in QTc interval for patients prescribed our
negative control. See Online Table 3 for complete
results.

IN COMBINATION, CEFTRIAXONE AND LANSOPRAZOLE
BLOCK THE hERG CHANNEL. Using a test of repeated
measures, we found no significant effect from ceftri-
axone on the hERG channel (p = 0.096). We found a
significant effect from lansoprazole alone (p = 1.63 x
10™4), causing a drop in current to 86.6 + 16.7% at
10 uM (no effect at 1 or 0.1 pM). In the presence of 1 yM
lansoprazole, ceftriaxone caused a dose-dependent
drop in current (96.8 + 13.2% of control at 0.1 pM;
and 89.3 + 13.2% at 100 pM; p = 1.07 x 10~%). In the
presence of 10 pM lansoprazole, ceftriaxone caused a
dose-dependent drop in current (63.1 + 10.9% of
control at 0.1 pM; and 42.4 + 11.6% at 100 uM;
P < 3.45 x 107°) (Figure 1D, left). For our negative
control, we saw a small block in cefuroxime alone
(94.0 + 14.8% of control at 100 pM cefuroxime;
p = 5.62 x 107°) but no dose-dependent response of
cefuroxime combined with 1 pM lansoprazole
(p = 0.083) (Figure 1D, right).

COMPUTATIONAL MODEL RECAPITULATES CLINICAL
OBSERVATIONS. Using the hERG current blocks
observed in the electrophysiology experiments as
input to the computational model, the APD prolon-
gation (measured as APD70) was 9 ms for the combi-
nation of 1 pM lansoprazole and 100 pM ceftriaxone
and 50 ms for 10 pM lansoprazole and 100 pM ceftri-
axone (Figure 2). For the combination of 1 uM lanso-
prazole and 100 pM cefuroxime, the APD70 was
shortened by 2 ms.
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FIGURE 2 Results of the Computational Model of Ventricular Eplcardial Myocytes
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The APD prolongation (measured as APD70) for each case are 9 ms and 50 ms, simulating
1 M lansoprazole + 100 pM ceftriaxone and 10 pM lansoprazole + 100 pM ceftriaxone,
respectively. Briefly, the model was run for a ventricular action potential paced at 1 Hz with
baseline conditions (black) and 10% or 55% block of peak hERG current (brown and red
respectively). APD70 = action potential duration at 70% of repolarization; other
abbreviations as in Central Illustration,

NO EVIDENCE OF CLASS EFFECTS BETWEEN
CEPHALOSPORINS AND PPIs. Given our identifica-
tion of a putative drug interaction between a cepha-
losporin antibiotic and a PPI, we systematically
evaluated all combinations of cephalosporins and
PPIs for evidence of a drug interaction in FAERS,
EHR, or both (Figure 3). The combination of ceftriax-
one and lansoprazole in men was the only drug pair
that had evidence in both FAERS and the EHR that
also passed our confounder analysis for concomitant
medications.

DISCUSSION

NEW DATA SOURCES PRESENT NEW AVENUES FOR
DISCOVERY. Data science and large clinical databases
present new opportunities to discover adverse drug
effects and drug-drug interactions. This is especially
true in situations where traditional methods are
impractical or unfeasible, as is often the case for DDIs.
There are many advantages to taking a retrospective
approach for detecting DDIs. The analyses are rela-
tively rapid and inexpensive to perform, and because
they are in situ, they focus on drug combinations that
are actually used together in clinical practice. In
particular, our use of latent signal detection to mine
for DDIs using side-effect profile models allowed us
to circumvent many of the limitations inherent in
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FIGURE 3 Analysls of Class Effects Between Cephalosporins and PPis
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We analyzed each cephalosporin and PP pair for evidence of an interaction in FAERS (solid
box = drug pair matches side effect profile), EHR (red = patients on combination have
significantly prolonged QT intervals compared with those on either drug alone; blue = no
significant change between cases and controls; open = no patients on the drug pair in the
EHR), and that the change seen in the EHR was not due to concomitant medications
(red star), We stratified the analysis between men and women. Only ceftriaxone and
lansoprazole in men passed each of these criteria. Abbreviations as in Central lllustration,

conventional data mining approaches that rely solely
on direct evidence between drug pairs and side
effects (13,14). However, there are many disadvan-
tages as well. Retrospective analysis, and data mining
in particular, are notorious for their potential biases
and high false discovery rates. There are simply too
many potentially confounding variables to make
strong statements about causal relationships.

Here, we present a novel strategy that couples
observational data mining with laboratory experi-
ments to identify QT-DDIs (Central Illustration). Our
observational analysis establishes the presence of
a clinically significant association between
co-medication and a prolonged QT interval. There
are many hypotheses that may explain such an
association. For example, a patient prescribed the
putative interacting drugs may also be prescribed a

JACC VOL. 68, NO. 16, 2016
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known QT-prolonging agent. In fact, this is what we
observed. Of 34 drug combinations that were asso-
ciated with increased QT intervals, 26 could be
dismissed as likely confounded by a known agent.
Alternatively, it may be that there is a real drug
interaction, in the pharmacological sense. The most
common physiological explanation would be hERG
block; therefore, we tested this hypothesis for
our top prediction (ceftriaxone/lansoprazole) by
using patch-clamp electrophysiology. This atypical
path, going from the clinic into the laboratory,
has great potential to increase the efficiency of
DDI discovery.

CRITICAL EVALUATION OF DATA MINING USING
LABORATORY EXPERIMENTS. We combined data
from FAERS with our local EHR to find evidence of
QT-prolonging drug interactions. Either data source
alone provides only weak evidence of a potential DDI
producing thousands of equivalent hypotheses. By
integrating these data, we increased power and
focused the analysis on only the strongest candidates.
Most importantly, we followed up on these DDI
hypotheses by using laboratory experiments to iden-
tify a possible mechanism.

AN INTERACTION BETWEEN CEFTRIAXONE AND
LANSOPRAZOLE IS UNEXPECTED. Our top candi-
date, ceftriaxone and lansoprazole, would not have
been suspected using current surveillance methods.
In the clinical records, we found that co-medication
of these 2 common drugs is associated with signifi-
cantly prolonged QTc intervals. This increase was
highest for white men and black women, in whom we
observed an average increase of 12 ms. It is important
to note that, if this effect size was observed for a
single drug, it would be well above the threshold for
regulatory concern during the approval stage (3). In
the laboratory, we found that, in combination, lan-
soprazole and ceftriaxone block the hERG channel up
to 57.6%, corresponding to an APD70 increase of 50
ms. At these higher lansoprazole concentrations, it is
likely that, if treated as a single entity, the combina-
tion would not have received regulatory approval.

STUDY LIMITATIONS. We discovered that ceftriaxone
and lansoprazole were significantly associated with
prolonged QT intervals using clinical data. Our labo-
ratory analysis suggests that this effect may be
mediated through the hERG potassium channel, the
most common mechanism by which drugs prolong
the QT interval. However, the molecular explanation
is not clear. Possibilities include a chemical interac-
tion between the 2 compounds, cooperative binding
to the channel, or an indirect mechanism through
proteins that function with hERG. Furthermore, we
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CENTRAL ILLUSTRATION Ceftriaxone and Lansoprazole Are Associated With Acquired LQTS
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We combined mining of adverse event reports, corroboration in electronic health records, and experimental validation using single-cell patch clamp to discover and
validate a QT-DDI between ceftriaxone and lansoprazole. We used a data-driven profile of side effects that are predictive of LQTS to prioritize drug pairs in FAERS. We
corroborated these findings in the electronic health records by comparing the QTc intervals of patients administered the prioritized drug pair to patients exposed to
either drug alone. We then validated our top prediction (ceftriaxone/lansoprazole) by measuring the dose-dependent changes in hERG channel current using patch-
clamp electrophysiology. AFib = atrial fibrillation; FAERS = FDA Adverse Event Reporting System; hERG = human Ether-a-go-go-Related Gene; LQTS = long QT

syndrome; QT-DDI = QT-prolonging drug-drug interaction; VTach = ventricular tachycardia.

found significantly different effects when our anal-
ysis was stratified by race and ethnicity. White men
and women appear to be sensitive to the interaction,
whereas black men experience only an intermediate
change, and women identifying as “other, including
Hispanic” experience no detectable effect. This is
consistent with the large amount of ethnic heteroge-
neity in cardiac potassium channels (24,25) and may
guide a structural analysis of the interaction.

PRIOR EVIDENCE OF RELATED ADVERSE EVENTS.
Lansoprazole is a commonly used PPI that is avail-
able over-the-counter. In retrospective analyses,
PPIs were associated with a slightly increased risk of
myocardial infarction (26). Additionally, there have
been a large number of deaths reported to the FDA for
patients taking this class of drugs, although this as-
sociation is not statistically significant. Our discovery
of a drug interaction with a PPI may explain these

observations, although this requires follow-up study.
Notably, evaluation of cefuroxime and lansoprazole,
a pair predicted not to interact from the FAERS
reporting frequencies, suggests that our pipeline is
capable of distinguishing between safe and unsafe
pairs, even within the same drug class.

CONCLUSIONS

We present evidence of a novel QT-DDI between lan-
soprazole and ceftriaxone. This interaction was
discovered by using a combination of data mining and
laboratory experiments. Our clinical data suggest that
patients taking this pair of interacting drugs are more
likely to have acquired LQTS, and the experimental
study suggests that this effect may be mediated by
blocking the hERG channel, the most common mech-
anism of acquired LQTS. This interaction appears to be
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specific to ceftriaxone and does not extend to
other cephalosporin antibiotics in combination with
lansoprazole. Follow-up studies are required to
confirm our findings and should include evaluation of
the mechanism of the interaction at the hERG channel,
the effect of ceftriaxone and lansoprazole on other ion
channels, and investigation of these drugs in combi-

nation with other hERG blockers.
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PERSPECTIVES

COMPETENCY IN SYSTEMS-BASED PRACTICE:
Data science methodologies may accelerate evalua-
tion of the safety of drug combinations. Data from
large numbers of patients and ECGs in electronic
health records can corroborate clinical event reports
of adverse drug interactions and, for those involving
QT-interval prolongation, laboratory methods can
then be used to elucidate the electrophysiological
mechanisms involved.

TRANSLATIONAL OUTLOOK: Further work is
needed to systematically extend this paradigm to
evaluate the safety of commonly used drug combi-
nations in other cardiovascular domains.
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Abstract

Introduction Drug-induced prolongation of the QT
interval on the electrocardiogram (long QT syndrome,
LQTS) can lead to a potentially fatal ventricular arrhythmia
known as torsades de pointes (TdP). Over 40 drugs with
both cardiac and non-cardiac indications are associated
with increased risk of TdP, but drug—drug interactions
contributing to LQTS (QT-DDIs) remain poorly
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characterized. Traditional methods for mining observa-
tional healthcare data are poorly equipped to detect QT-
DDI signals due to low reporting numbers and lack of
direct evidence for LQTS.

Objective  We hypothesized that LQTS could be identi-
fied latently using an adverse event (AE) fingerprint of
more commonly reported AEs. We aimed to generate an
integrated data science pipeline that addresses current
limitations by identifying latent signals for QT-DDIs in the
US FDA’s Adverse Event Reporting System (FAERS) and
retrospectively validating these predictions using electro-
cardiogram data in electronic health records (EHRs).
Methods We trained a model to identify an AE finger-
print for risk of TdP for single drugs and applied this model
to drug pair data to predict novel DDIs. In the EHR at
Columbia University Medical Center, we compared the
QTc intervals of patients prescribed the flagged drug pairs
with patients prescribed either drug individually.

Results We created an AE fingerprint consisting of 13
latently detected side effects. This model significantly
outperformed a direct evidence control model in the
detection of established interactions (p = 1.62E—3) and
significantly enriched for validated QT-DDIs in the EHR
(p = 0.01). Of 889 pairs flagged in FAERS, eight novel
QT-DDIs were significantly associated with prolonged
QTc intervals in the EHR and were not due to co-pre-
scribed medications.

Conclusions Latent signal detection in FAERS validated
using the EHR presents an automated and data-driven
approach for systematically identifying novel QT-DDIs.
The high-confidence hypotheses flagged using this method
warrant further investigation.
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Drug—drug interactions that prolong the QT interval
(QT-DDIs) can can lead to potentially fatal
arrhythmias but remain poorly characterized.

We developed an integrative data science pipeline
that combines mining for latent QT-DDI signals in
the US FDA Adverse Event Reporting System
(FAERS), and retrospective analysis of
electrocardiogram laboratory results in electronic
health records, at Columbia University Medical
Center.

Using latent evidence of long QT syndrome to detect
QT-DDIs in FAERS significantly outperformed use
of solely direct evidence of this adverse event in the
detection of established interactions. The pipeline
significantly enriched for novel QT-DDIs and
identified eight novel interactions that warrant
experimental validation.

1 Introduction

Long QT syndrome (LQTS) is a genetic or acquired change
in the electrical activity of the heart that can increase the
risk of forsades de pointes (TdP), a dangerous ventricular
tachycardia that can lead to sudden cardiac death [1].
Diagnosed using an electrocardiogram (ECG), LQTS is
characterized by a prolonged QT interval and represents an
abnormally increased cardiac action potential duration.
While the link between QT prolongation and TdP is
complex and involves the interplay of multiple factors, a
QT interval >500 ms (vs. a normal range of 350440 ms)
is nonetheless considered a significant risk for arrhythmo-
genesis [2].

Since the first reports of TdP in the 1960s [3], mutations
in 13 genes coding for cardiac ion channels and their
associated proteins have been found to play roles in LQTS
[1, 4-6]. Congenital LQTS can result from mutations that
disrupt the Ixs, Ik or Iy, ion currents; however, the
acquired form of LQTS (which is often drug-induced) is
almost exclusively due to block of the human ether-a-go-
go-related gene (hERG) channel (KCNH2), which plays a
role in the Iy, delayed rectifier potassium current respon-
sible for ventricular repolarization [3]. Drug-induced
inhibition of I, was first discovered for the antiarthythmic
quinidine [7], and since then over 40 drugs with both
cardiac and non-cardiac indications have been found to
possess either a known, possible, conditional, or congenital
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link to dangerously prolonging the QT interval [8]. Ter-
fenadine (an allergy medication) and cisapride (used to
treat acid reflux) were withdrawn from the market in 1997
and 2000, respectively, for prolonging the QT interval [9],
and risk of TdP is now the second leading cause for
approved drug withdrawal [2].

Drug—drug interactions (DDIs) such as those between
methadone (an analgesic) and quetiapine (an antipsychotic)
have also been reported to increase the risk for TdP [10].
Despite the increasingly comprehensive resources available
to clinicians for linking single drugs to TdP, little remains
known about DDIs (QT-DDIs). We define a QT-DDI as a
measurable change in effect (QT interval duration) for a
drug pair compared with the effect observed for either drug
alone. This includes both pharmacokinetic interactions
(such as the increased plasma concentrations of methadone
in patients also taking quetiapine [10]), as well as phar-
macodynamic interactions. While the FDA has required
clinical studies to assess the effects of drug interactions, it
is intractable to prospectively evaluate every possible drug
combination. With DDIs thought to play a role in upwards
of 17 % of adverse events (AEs), and an increasingly aging
population taking multiple drugs concurrently [11, 12],
there is a pressing need for methods to identify potential
interactions.

Molecular mechanism-based approaches such as bio-
logical network analysis have been previously used to
prioritize drugs with molecular links to LQTS genes, but
they remain limited to known drug targets and often only
apply to individual drugs [6]. More recent work using
machine learning on network data can overcome the
requirement for known targets [13]; however, this approach
has only been validated for individual drugs.

Observational healthcare datasets such as the US FDA
Adverse Event Reporting System (FAERS) and electronic
health records (BEHRs) provide invaluable resources for
adverse event prediction, but their use is tempered by
multiple limitations. Spontaneous reporting systems such
as FAERS are known to suffer from both reporting bias and
sampling variance [14], and methods for mining FAERS
traditionally rely on direct evidence between a drug
exposure and AE (i.e. the number of reports with the drug
and AE co-mentioned). While methods have been devel-
oped to limit high false positives by correcting for unsub-
stantiated drug—AE signals [15], this leads to a tradeoff
between reducing false positive rates and the ability to
actually detect AEs. Direct detection of AEs falters in the
prediction of DDIs, where reporting numbers are often
lower than for single drugs and unanticipated or unex-
pected events with no understood molecular explanation
can go unreported. A number of advances have been made
in the field, including the observation that additive baseline
models tend to outperform multiplicative ones [16] and that



An Integrative Data Science Pipeline to Identify Novel Drug Interactions 435

case reports can be combined with mechanistic information
such as shared cytochrome P450 (CYP) metabolism to
develop more sophisticated triage algorithms [17].
Nonetheless, most DDI signal detection algorithms have
had limited success [18—20]. Additionally, AE detection in
EHRs can be challenging as such data are often complex,
inaccurate, and missing [21]. While use of either
dataset alone can thus be problematic for QT-DDI detec-
tion, integration of these two sources using data science
offers an opportunity for improved performance.

In previous work, we demonstrated that a novel signal
detection algorithm could be used for detecting latent
signals of previously unknown DDIs for eight severe AE
classes [22, 23]. Importantly, each individual drug in the
drug pair had no previously known connection to the AE
class of interest. In this study, we introduce an updated
pipeline called DIPULSE (Drug Interaction Prediction
Using Latent Signals and EHRs) that uses latent signal
detection in FAERS to generate an AE fingerprint for
LQTS. This AE fingerprint—trained on individual drugs
with a known link to prolonging the QT interval—repre-
sents a profile of more commonly reported side effects that
together are highly predictive of underlying QT interval
prolongation. We apply this fingerprint model to an inde-
pendent test data set of drug pairs to predict new QT-DDIs
where neither drug alone has a known association to this
phenotype. We validate these predictions using ECG lab-
oratory results in EHRs.

2 Methods

A graphical overview of DIPULSE can be found in
Fig. 1. The individual steps of the pipeline corresponding
to each panel of the figure are described in detail below.
Briefly, we used AE reporting frequencies for individual
drugs to identify an AE fingerprint for increased risk of
TdP. We then apply this model to a test data set of AE
reporting frequencies for drug pairs. We filtered for high-
confidence predictions and proceeded to validate these
putative QT-DDIs in the EHR by comparing the QTc
(heart rate-corrected QT) intervals of patients prescribed
the flagged drug pair with patients prescribed either drug
alone. Finally, we perform a confounder analysis to
remove any associations that can be explained by co-
prescribed medications, and generated a final candidate
list of novel QT-DDIs.

In developing the pipeline, our rationale was to priori-
tize high precision over high recall to obtain a final list of
high-confidence interactions; therefore, the choices we
made in designing the filtering steps described below
reflect this conservative approach. We implemented the
method using Python 2.7.9 and R 3.1.0.

2.1 Primary Data Sources

We downloaded a snapshot of the FAERS database con-
taining 1,851,171 reports (corresponding to the first quarter
of 2004 to the first quarter of 2009). Each report in FAERS
contains the drugs prescribed to the patient, the drug
indications, and the observed AEs. We included suspected,
interacting, and concomitant drugs on the reports.

As positive controls, we downloaded a list of 180 drugs
with known (n = 47), possible (n = 75), conditional
(n = 31), or congenital (n = 27) risk of TdP from Credi-
bleMeds, an online compendium of drugs associated with
LQTS [8]. We also obtained a list of 2856 critical and
significant DDIs from the Veteran Affairs Hospital [24].

To validate our DDI predictions, we used EHR data
from Columbia University Medical Center (CUMC). In
addition to patient demographics, drugs prescribed, and
diagnosis codes, we also used QTc (heart rate-corrected QT
interval) values obtained from ECG laboratory results. The
study was approved by the CUMC Institutional Review
Board.

2.2 Generating Adverse Event (AE) Reporting
Frequency Tables

We pre-processed the reports from FAERS to generate the
intermediate AE reporting frequency tables in the OFFSIDES
(single drug) and Twosmes (drug pair) databases [25].
Orrsmes and TwosIDEs were created by training propensity
score matching models to match patients exposed to a
single drug or drug pair to unexposed controls on the basis
of co-prescribed medications and drug indications; an
advantage of this approach is that only patients for whom
controls could be matched are used for drug safety pre-
diction [25].

An intermediate step in this process is the assembly of
AE frequency reporting tables for both single drugs and
drug pairs, as seen in Fig. 1, with each row representing a
drug and each column representing one of the AEs in
FAERS. For single drugs, the value at a given row and
column represents the frequency of reporting Fiy, defined
as the fraction of reports for drug i containing the AE
k. Similarly, for drug pairs, the reporting frequency Fyy
corresponds to the fraction of reports for drug pair (i,
j) containing the AE k. We used the former matrix to train
the fingerprint model, and the latter for DDI prediction.

2.3 Training AE Fingerprint Model
We used the AE reporting frequencies (Fy) in the fre-
quency table for single drugs as features to train a logistic

regression classifier. The binary classifier models the log
odds ratio of a drug prolonging the QT interval as a linear
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Fig. 1 Overview of DIPULSE pipeline, which combines mining of
FAERS and EHRs to flag novel QT-prolonging DDIs. FAERS: We
generate an AE reporting frequency table (dimensions, N drugs by
M ABEs) for single drugs in FAERS. The value at a row and column
represents the fraction of reports for drug i containing AE k (Fy). We
label a drug as a positive example (shown in red) if it has a known
risk of TdP (obtained from http://www.CredibleMeds.org). All drugs
not found in CredibleMeds were labeled as negative examples (shown
in green). We use machine learning to generate an AE fingerprint
model that identified the most predictive subset of features (AE
reporting frequencies, Fy) as latent evidence for predicting whether a
drug does or does not prolong the QT interval (gray boxes). We then
apply this fingerprint model to an independent test data set consisting
of a matrix (with AE reporting frequencies Fy) for drug pairs. We
send pairs receiving high classifier probabilities (but where neither
individual drug is known to prolong the QT interval) for EHR

combination of each AE reporting frequency in the model
multiplied by a weight (known as a B coefficient);
depending on the probability threshold set, a drug above
the threshold is classified as increasing the risk of TdP, and
a drug below the threshold is classified as safe. Training the
model requires both positive and negative examples. As
positive examples, we used the subset of the 47 drugs with
a known risk of TdP in CredibleMeds that were also in
FAERS (n = 23). As negative controls, we selected all
drugs in FAERS that did not appear in CredibleMeds (i.e.
have no known, possible, conditional, or congenital risk of
TdP; n = 530).
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validation (in this case pairs (Dy—1, Dn—2) [purple-blue] and (Dy_1,
Dy) [purple-orange]). EHR: We validate putative interactions using
electrocardiogram laboratory results in the EHRs by determining
whether patients prescribed a predicted interacting drug pair had
increased QTc intervals compared with patients taking either drug
alone, In this example, patients prescribed the drug pair (Dy_;, Dy_2)
have a significantly increased QT interval compared with patients on
either drug alone. This is not observed for drug pair (Dy_1, Dy) so it
is filtered out. Finally, we performed a confounder analysis to confirm
that the significant increase observed in QTc interval is not due to
other co-prescribed medications. DIPULSE Drug Interaction Predic-
tion Using Latent Signals and EHRs, EHRs electronic health records,
FAERS FDA Adverse Event Reporting System, DDIs drug-drug
interactions, AE adverse event, TdP torsades de pointes, QTc heart
rate-corrected QT interval

Because the number of features (11,305 AEs) is much
greater than the number of examples (553 drugs), overfit-
ting of the model to the training data is a concern. To
ensure the model generalized to our test data set (drug
pairs), we reduced the number of features by using L1
(lasso) regularization [26]. Unlike L2 (ridge) regularization
(which penalizes the squares of the feature weights), L1
regularization penalizes their absolute values and is
therefore preferred because it results in sparse models (i.e.
most of the feature weights will be driven to zero). We
generated five models, each of which contained between 5
and 20 features obtained by varying the regularization
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strength for the given model. We evaluated these models
using 10-fold cross-validation, and then re-fit the classifier
using only the selected features. The features for each of
these models constitute an AE fingerprint that represents
latent evidence for QT interval prolongation.

As a control, we generated a logistic regression model
built solely using direct evidence of QT interval prolon-
gation (standardized Medical Dictionary for Regulatory
Activities [MedDRA] query for ‘Torsade de Pointes/QT
prolongation’). There were only six AEs corresponding to
QT interval prolongation or TdP (electronic supplementary
Table 1), and therefore feature selection was not necessary.

2.4 Predicting Novel Drug-Drug Interactions
(DDIs) Using the Fingerprint Model

We next applied the QT fingerprint model to an independent
test data set consisting of the AE reporting frequencies (Fiy)
in the frequency table for drug pairs. The model outputs a
probability for a given drug pair to prolong the QT interval.
We assessed model performance using two references. In the
first, we labeled each drug pair containing a drug known to
increase the risk of TdP as a positive example. While these
may not be bonafide DDIs, they demonstrate the ability of the
fingerprint model to ‘re-discover’ drugs known to prolong
the QT interval within the drug pair data. We used this val-
idation to select the optimal fingerprint model. We also
performed an additional validation using a list of critical and
significant DDIs from the Veteran Affairs Hospital. For both
of these evaluations, we compared the performance of the
‘latent’ AE fingerprint model with the ‘direct evidence’
control model using DeLong’s test [27].

To obtain a candidate list of novel DDIs predicted by the
fingerprint model, we first removed all drug pairs con-
taining a drug in the CredibleMeds list. We then filtered for
all novel predictions found at a classifier probability below
a 4 % false positive rate according to the CredibleMeds
evaluation. We chose this false positive rate threshold by
modeling the expected increase in false discovery rate as a
function of false positive rate (see electronic supplemen-
tary Fig. 1 and accompanying legend for a description of
the analysis). Finally, we removed drug pairs that would
receive high classifier scores regardless of the features used
in the model by generating 100 logistic regression models
using randomly chosen features and estimating empirical
p values for each drug pair. We removed any drug pairs
receiving an empirical p value >0.01.

2.5 Validating Novel DDIs Using Electronic Health
Records

While the novel DDIs predicted using our signal detection
algorithm each contain latent evidence for prolonging the

QT interval, ECG values in EHRs allow us to retrospec-
tively evaluate the effect of these drug pairs (our cases) on
QT interval duration compared with either drug alone (our
controls). Because QT interval durations differ between
males and females [28], we evaluated the effects of a given
drug pair on each sex separately.

To obtain cases, we selected patients at New York-
Presbyterian Hospital/Columbia University Medical Center
who were prescribed each drug in a given drug pair within
a 7-day period. Patients were also required to have an ECG
lab—and corresponding QTc (heart rate-corrected QT
interval)—within 36 days of the second drug prescription.
We chose this limit to minimize the potential for new
confounding drug prescriptions or interventions; addition-
ally, because follow-up visits are often scheduled in units
of weeks, we allowed for 5 weeks plus 1 day for laboratory
tests to be performed [22]. For patients with multiple QTc
values within this time period, we used the maximum
value.

To obtain controls, we selected patients taking which-
ever individual drug in the pair yielded the greatest median
QTc within a 36-day period from drug prescription; we call
this drug the ‘control’ drug. We then compared QTc values
between cases and controls and assessed significance using
a Mann—Whitney U test, correcting for multiple hypothesis
testing using Bonferroni’s method.

In order to demonstrate that the predictions being sent
for EHR validation were enriched for drug interactions that
actually prolonged the QT interval, we ran the above EHR
case-control analysis on a set of drug pairs equal in number
to that generated by the latent signal detection but ran-
domly chosen from the frequency table for drug pairs. To
generate a more representative comparison, we required
that each pair be comprised of a randomly chosen drug
paired with a ‘control’ drug (i.e. the drug with the greatest
QTc interval alone from the latent evidence pairs). Addi-
tionally, to ensure equivalent statistical power we matched
the number of patients in the case groups of the randomly
chosen pairs to the case group sizes of the pairs prioritized
by the latent signal detection. We counted the number of
random pairs that had significant increases in QT interval,
and repeated this sampling procedure 1000 times to build
an empirical distribution of how many significant results
would be expected after EHR analysis by chance alone.

Finally, we adjusted for confounders by confirming that
the elevated QTc interval on the drug pair was not due to
other co-prescribed medications. For each of our sets of
cases (patients on a given drug pair) and controls (patients
on an individual drug in the pair), we identified possible
confounder drugs by counting the number of exposures to
each drug prescribed up to 36 days prior. We evaluated
each potential confounder by confirming that it was cor-
related both with the exposure condition and with QTc
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values. For the former, we determined whether the
covariate was more likely to be prescribed with the drug
pair compared with the single drug using a Fisher’s exact
test; for the latter, we compared the QTc values for patients
exposed to the covariate versus those unexposed using a
Mann-Whitney U test. Both of these evaluations were
performed using a Bonferroni correction for multiple
hypothesis testing. We collected all drug covariates that
passed these two requirements and assessed their signifi-
cance (for males and females separately) using an analysis
of covariance (ANCOVA). To obtain the final list of val-
idated novel DDIs, we only kept those results (drug pairs
for a given sex) receiving significant ANCOVA p values
(» < 0.05) for the DDI.

3 Results

3.1 QT Fingerprint Model Significantly
Outperforms Model Built Using Only Direct
Evidence

Of the five fingerprint models evaluated, we found that the
model containing 13 features achieved the best perfor-
mance for drug pair data (area under the curve
[AUC] = 0.69 using pairs containing a known Credi-
bleMeds drug) (electronic supplementary Fig. 2); see
Table 1 for the list of features that constitute the QT AE
fingerprint. Importantly, the QT fingerprint model signifi-
cantly outperformed the model built using direct evidence,
as evaluated by both the CredibleMeds (p = 1.62E—3) and
Veteran Affairs (p = 5.22E—10) drug pair standards
(Fig. 2). We also compared these models to a previously
published additive baseline model for predicting DDIs [19]
and found that the latent evidence model outperformed this

Table 1 Features in QT fingerprint model

Adverse event Beta

Drug interaction 0.52
Atrial fibrillation 0.50
Arrhythmia 0.29
Electrocardiogram QT prolonged 0.28
Tachycardia ventricular 0.28
Asystole 0.27
Torsades de pointes 0.24
Completed suicide 0.21
Rhabdomyolysis 0.17
Agitation 0.07
Drug ineffective —0.36
Hemorrhage —0.25

Myocardial infarction —0.18
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method (electronic supplementary Fig. 3; CredibleMeds:
p < 2.2E—16; Veteran Affairs: p = 2.18E—11). After fil-
tering using both empirical p-values and the 4 % false
positive rate cutoff, we obtained 889 putative novel DDIs
to be validated in the EHR.

3.2 EHR Validation and Confounder Analysis
Confirms Novel Drug Interactions Prolonging
the QT Interval

Our EHR evaluation yielded 49 results (drug pairs for
males and/or females) that had significantly increased QTc
intervals on the drug pair compared with either drug alone
(electronic supplementary Fig. 4). This number of results
was significantly greater than for randomly generated input
to the EHR validation (p = 0.01) (electronic supplemen-
tary Fig. 5). After confounder analysis, we obtained ten
results (corresponding to eight distinct drug pairs) which
represented validated novel DDIs that increase the risk of
acquired LQTS (Table 2).

The greatest increase in median QTc (30 ms) was for
octreotide (a somatostatin analog used to lower growth
hormone levels) and lactulose (administered to treat con-
stipation) compared with octreotide alone (p = 2.48E—4)in
males, and males prescribed this pair were 2 times as likely
to have a QTc interval > 500 ms (electronic supplementary
Table 2). For females, co-prescription of mupirocin and
vancomycin was associated with a 20 ms increase in median
QTc compared with vancomycin alone (p = 1.3E—4);
females prescribed the pair were 1.7 times as likely to have a
QTec interval > 500 ms. A complete list of retrospectively
validated interactions and the number of patients in the case
and control groups can be found in Table 2.

4 Discussion

Drug-induced LQTS and its potential for fatal arrhythmia
(TdP) make this disorder of critical importance both to drug
discovery and pharmacovigilance. Indeed, an important step
in the drug development process is confirming that the lead
compound does not significantly block the hERG channel that
contributes to TdP [2]. However, the inability to prospectively
identify this risk is highlighted by the increasing number of
drugs found to increase the risk for TdP [8]. Even more dif-
ficult to detect are DDIs that contribute to LQTS, as experi-
mental evaluation of all possible QT-DDIs is not feasible and
traditional methods for mining observational data are poorly
equipped to handle low reporting numbers and high false
positive rates. Because analyses of spontaneous reporting
systems (such as FAERS) and EHRs alone have many limi-
tations, in this study we developed an integrative pipeline that
incorporates multiple dimensions of observational data to
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Fig. 2 Receiver operating characteristic curves for adverse event
fingerprint model and direct evidence control. a Model validation was
performed by labeling drug pairs containing a drug with known
increased risk of TdP as positive examples. We compared the
performance of a model built using latent evidence (AE fingerprint
model) to a control model using only direct evidence of QT
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prolongation. b A second evaluation performed using a list of critical
and significant DDIs from the Veteran Affairs Hospital in Arizona.
For both validations, the AE fingerprint model significantly outper-
formed the model built solely with direct evidence. Area under the
curve (AUC) is indicated in parentheses. DDIs drug—drug interac-
tions, 7dP torsades de pointes, AE adverse event

Table 2 List of novel DDIs generated by DIPULSE and validated in the EHR

Drug 1 Drug 2 Control Sex Estimate p value Median Median QTe AQTc No. of No. of
QTc cases controls (ms) cases  controls
Octreotide Lactulose Octreotide M 748 248E—04 485 455 30 333 603
Mupirocin Vancomycin ~ Vancomycin F 54.5 1.30E—04 476 456 20 810 10,165
Metoprolol Fosphenytoin ~ Metoprolol M 409 2.19E—07 462 444 18 549 24,717
N-Acetylcysteine  Vancomycin ~ Vancomycin M 174 3.74E—-04 469 453 16 2633 9789
Cefazolin Meperidine Cefazolin F 21.6 1.29E—05 455 441 14 1025 9172
Cefazolin Meperidine Cefazolin M 182 8.97E—08 452 440 12 2110 10,013
Ceftriaxone Lansoprazole Ceftriaxone M 391 421E—09 458 446 12 934 5734
N-Acetylcysteine  Morphine N-Acetylcysteine M 12.1 3.19E—02 460 451 9 2525 6046
Meperidine Vancomycin  Vancomycin F 34.6 477TE—03 464 457 7 1105 9894
N-Acetylcysteine  Morphine N-Acetylcysteine F 223 7.93E—04 459 455 4 1900 4803

The bolded column highlights the AQTc for a given drug pair

DDIs drug—drug interactions, DIPULSE Drug Interaction Prediction Using Latent Signals and EHRs, EHRs electronic health records, M male,

F female, QTc corrected QT interval

allow for identification of true QT-DDI signals. We demon-
strated the applicability of this data science approach by
identifying latent signals of LQTS in FAERS and retrospec-
tively validating these novel QT-DDI predictions using EHRs.
Comparing our AE fingerprint model for QT prolongation
with a direct evidence control demonstrated that latent evi-
dence of drug-induced LQTS in FAERS can outperform direct
evidence in the detection of established interactions.

While most drugs prolong the QT interval by interacting
with the hERG channel, the clinical data used in this
analysis do not permit a mechanistic explanation for the
synergistic effects of the identified DDIs. Electrophysiol-
ogy experiments to directly assay the effect of individual

drugs and drug pairs on hERG channel activity can provide
further evidence for, and molecular mechanisms of, these
effects [2]. Importantly, QTc correction formulas still used
today were developed in 1920 and are known to be inac-
curate when heart rate changes occur outside the baseline
range used to define the formula [2]. As such, drugs that do
not directly affect ventricular repolarization but instead
alter the patient’s heart rate may be incorrectly attributed to
increasing the QTec. It is possible that some of the inter-
actions we identified were confounded by this complexity.
This limitation highlights the need for experimental vali-
dation of our QT-DDI predictions to directly assess hERG
channel block or effects on other ion channels.
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In considering the features selected for the QT finger-
print model (Table 1), many of the features are expected,
including ECG QT prolonged, TdP, arthythmia, and even
rhabdomyolysis, as this condition can be induced by
hypokalemia which also predisposes patients to LQTS [3,
29]. However, other features are more unexpected,
including completed suicide and agitation. One explanation
for the selection of these features is that a number of the
positive control drugs (including chlorpromazine, citalo-
pram, and haloperidol) from CredibleMeds are indicated
for conditions characterized by agitation and suicidality.
We purposefully did not manually exclude any features on
the basis of wanting to develop a purely data-driven model
that is not limited to current clinical knowledge of (non-
cardiac) side effects that are highly predictive of underly-
ing QT prolongation; however, because of the relatively
small number of positive controls (predominantly with
psychological, antibacterial, and anti-arrhythmic indica-
tions), we acknowledge the possibility that inclusion of
these features may be driven by the indications of the
positive controls rather than their effects on QT
prolongation.

Our EHR control analysis (while limited to comparing
the number of significant findings prior to confounder
adjustment) demonstrated that our method significantly
enriched for QT-prolonging drug pairs compared with
random selection. Approximately 4 % of pairs investigated
‘passed’ the EHR validation prior to confounder analysis.
Of the 889 pairs flagged by latent signal detection in
FAERS, 251 of these pairs (28 %) had no patients pre-
scribed the pair in our EHR and therefore could not be
evaluated. The other pairs that did not pass validation were
either prescribed at low numbers (and could therefore be
false negatives due to insufficient statistical power) or may
be false positives from FAERS. While we believe the 7-day
window between drug prescriptions represents a fairly
stringent cutoff for confirming that patients were taking
both drugs in a pair concurrently, challenges in estimating
the duration of treatment in EHRs also has implications for
accurately selecting all of the desired patients in the case
group. Follow-up analyses could repeat the EHR analysis
at additional institutions to both replicate these results and
investigate drug pairs that could not be validated in our
EHR.

Because our EHR analysis filtered for interactions (pairs
with significantly greater QT interval prolongation com-
pared with either drug alone), a final potential explanation
for pairs identified in FAERS that could not be validated in
the EHR is that the highlighted pair represented a novel
single drug that prolongs the QT interval. While we limited
the scope of this study to identifying QT-DDISs, resources
such as CredibleMeds continue to use signals in FAERS as
part of their evidence portfolio for the inclusion and
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removal of new individual drugs to/from the database [30].
An important challenge to overcome in the evaluation of
potential QT-prolonging single drugs in the EHR would be
the identification of proper controls; propensity score
matching offers one opportunity for addressing this [25].

We note that the AE reporting frequencies for drug pairs
(Fy) cannot intrinsically distinguish between interactions
and single-drug effects from either drug i or drug j alone.
To distinguish between these two explanations for a drug
pair receiving a high classifier score, it is therefore nec-
essary to remove all single-drug effects (attributable to not
only a known but also possible, conditional, or congenital
link to TdP). CredibleMeds uses a number of signals (in-
cluding FAERS, laboratory and clinical research reports,
and clinical trial data) to populate their database [30].
Thus, while it is possible that CredibleMeds does not
contain complete coverage of all QT-prolonging drugs, we
believe it represents the most reliable resource for justify-
ing removal of drug pairs that receive high scores due to
the effects of single drugs. Application of our method to
other AEs would therefore necessitate a similarly reliable
resource of single-drug effects to minimize the possibility
of falsely labeled interactions. While our confounder
analysis investigated the effects of co-prescribed medica-
tions in addition to the drug pair of interest, follow-up work
could also incorporate the dose of each drug in the pair as a
potential confounder.

While cases of drug-induced LQTS have predominantly
been found to be due to blocking of Ix., we do not discount
the possibility for other potential mechanisms of these QT-
DDIs. Biological network analysis [6, 13] may be useful
for identifying other proteins, in addition to or instead of
hERG, that are affected by these drugs.

5 Conclusions

In this study we have developed and validated DIPULSE,
an automated integrated pipeline for flagging novel DDIs
that can prolong the QT interval using data from both
spontaneous reporting systems (FAERS) and EHRs. By
identifying latent signals of QT interval prolongation, this
method is able to overcome some of the limitations in
mining for DDIs. The method significantly outperforms
DDI detection solely using direct evidence for QT pro-
longation in the detection of established interactions. This
study highlights the utility of integrative data science
approaches in mining for new and potentially fatal DDIs.
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